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ABSTRACT 
This paper discusses the use of probabilistic graphical 
models (PGMs) for initiating dynamical human musical 
interactions, in the context of free improvisation. This 
study proposes the model of Markov Networks and it 
speculates how they may serve for forming dynamical 
sepsets amongst players, based on their reciprocal be-
liefs, expressed as Bayesian inference. The prior is an 
assigned, private, musical personality. The players com-
municate their affinity preferences over a computer net-
work using a graphical user interface. The conclusion is 
that Markov Networks viewed as dynamical Bayesian 
games are employable in the context of free improvisa-
tion and distributed creativity, providing a useful (and 
conceptually dissimilar) alternative to other structures 
that have been employed in music improvisation, such as 
graphic scores and idiom-based improvised forms. 
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1. INTRODUCTION 
The purpose of this research is to apply models of dy-
namical structural organisation based on probabilistic 
graphical models (PGMs) and Bayesian inference to 
game-based approaches in free improvisation. Although 
models derived from statistical, economic and computa-
tional sciences have been employed successfully in the 
areas of composition [1], algorithmic composition [2], [3] 
and machine improvisation [4], [5], there seems to be a 
shortage of studies that have addressed real-time interac-
tions inspired by such mathematical and computational 
models in the context of free improvisation. Moreover, 
even in such cases, the conceptual framework has been 
that of a free improviser playing along/with an intelligent 
artificial counterpart. This paper proposes a model in 
which all players are human, a model that retains the per-
formers’ agency in the musical output, and where the 
machine is used for interfacing tasks only, as to provide a 
communication network within which the players oper-
ate. I claim that there is little if no historical precedent in 
this direction as all examples of Markov Networks (MNs) 
applied to music have been and are to be found in the 
areas of artificial intelligence and machine learning, be it 
applied to automatised generation of musical material 
(often in the style of) [6], [7], [8], [9], modelling musical 
structure [10], [11], statistical methods for audio pro-
cessing [12], [13] and music information retrieval [14], 
amongst others. In contrast to these applications, I pro-

pose an abstraction for and between human players which 
is realised in real-time and, ultimately, with an associated 
freely improvised output. 

2. FREE BAYES 
Free music improvisation entails a high degree of dynam-
ical shuffling of roles, which allows the participants to 
shape interactions in real-time and to react to unforeseen 
circumstances with split-second decision-making wizard-
ry. This requires both the ability to make sense of the 
information available to them at any given time as well as 
the capacity to store and edit such information and beliefs 
in order to respond to their best. Such responses are based 
on the evaluation and the inferential analysis of the con-
textual evidence players are presented with. Such evi-
dence is not immutable and static but, on the contrary, 
malleable and dynamic. Put simply, any improviser at 
any given point in time is actuating musical strategies 
that result from what she believes is happening or is go-
ing to happen in the near future. As soon as the player is 
provided with new evidence, she will adjust her response 
accordingly.  This is analogous to what, in probability 
theory, is defined by the Bayes rule. 
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The above reads: the probability of a cause, given the 
observation of an event, equals to the probability of the 
event given the cause, times the probability of the cause, 
all divided by the probability of the event.  

3. MARKOV NETWORKS 
Markov Networks (MNs) are undirected and possibly 
cyclic graphs. In the context of the natural interactions 
between free improvisers, MNs are more appropriate than 
directed graphs (Bayesian Networks), as they allow influ-
ences and inferences to flow in both directions. A formal 
definition can be stated as follows: a Markov Network is 
a random field S, which is a collection of indexed random 
variables (either discrete or continuous) where any varia-
ble !"   is independent of all other variables in S. Such a 
network also satisfies the Markov property, which states 
that no matter what path the system took to get to the 
current state, the transition probability from that state to 
the next will be independent from such path. 



 
! ",$ = &' ( = ) + 1 = ,& &( ) = -, ( ).1 , … , ( 0       (2) 
 
The simplest class of MNs is the pairwise MN, an exam-
ple of which is depicted in the following example:  
 

 
 

Figure 1. A pairwise Markov Network 
 

In my musical implementation, the nodes of above graph 
represent four players, which, by virtue of playing to-
gether, influence each other. Since there is no strictly 
conditioning and/or conditioned variable, as one would 
have in a Bayesian Network, the notion of factor, herein-
after indicated as φ, will come in handy for defining the 
interactions between the nodes (players). Factors also go 
under the names of affinity functions, compatibility, soft 
constraints, and they generalise the idea of the local pre-
disposition and willingness of any pair of nodes to take a 
joint assignment. 
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!"  !"  30 
!"  !"  5 
!"  !"  1 
!"  !"  10 

 
Table 1. Example of a local distribution amongst player Red 
and player Yellow 
 
The above are arbitrary values and are chosen for illustra-
tion purposes only. The binary superscript (either zero or 
one) for the Red and Yellow players, in the respective 
columns, indicate their willingness to undertake a joint 
assignment with the other, or not. In the above example, 
the strongest factor indicates that neither Red nor Yellow 
would prefer to cooperate, talk to each other, play with 
each other, etc. 
Similarly, one can imagine the other three local factors 
!"  , !"  ,!"#   and the probability distribution over the de-
picted pairwise MN would be: 
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The above is not a proper probability distribution, since 
the sum over all the marginal distributions does not equal 
to one. In order to obtain a proper distribution, one needs 
to normalise by diving by the partition function Z. 
The partition function is expressed as follows: 
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After having obtained the probability distribution, one 
can observe that the local preferences are no longer repre-
sented, as they have all been affected by the propagation 
of beliefs of all players over the network.  
Put simply, even a four-player structure as this one, ends 
up in a complex aggregate of all the different factors that 
compose the MN. This is in contrast to what occurs in 
Bayesian Networks, where it is possible to inspect the 
probability distribution and retrieve a local factor. Pair-
wise MNs are not fully expressive and they are insuffi-
cient and inappropriate for representing all possible inter-
actions. A more expressive model, used in my musical 
translation for improvisers, is the induced MN. In this 
model, each general factor ϕ has a scope that might con-
tain more than two variables (as opposed to pairwise in-
teractions). 
A Gibbs Distribution is parameterised over a set of fac-
tors Φ, where 
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The un-normalised probability distribution will be: 
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Whereas the normalised probability distribution will be 
expressed by: 
      

!" #$,… , #' = ) 1+"
!)" #$, … , #'  

   (6) 
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!" = $ %$" &', … , &*
+,,…,+-

 
    (7) 

 
It is now possible to express a much wider range of sce-
narios, which might involve factors over three or more 
variables.  
 

 
 

Figure 2. From local factors to induced Markov Network 
 
Simply put, two or more variables (players, in this case) 
are connected whenever they appear in the same scope of 
a given factor. However, it would be impossible to infer 
the factorisation from the graph. In this sense, influence 
can flow along any active trail/edge. I find this model an 
exquisite abstraction of a typical interactive and dynami-
cally assigned scenario amongst music improvisers, 
where alliances and joint assignments are formed, under-
taken, updated, abandoned, in continuous real-time. Hav-



ing understood the workings of an induced MN, I will 
now present my original rendition in musical form, as a 
dynamical model of interactions amongst free improvis-
ers. 

4. MN FOR FREE IMPROVISERS 

4.1 Motivation 

The decision of employing MN as a model for impro-
vised musical interaction follows on previous experi-
ments of mine, carried out in regards to focal points, 
Schelling’s salience [15] and Markov Chains. The afore-
mentioned experiments1, pointed at the need to move 
towards an increased complexity of inter-relations and a 
decreased complexity of the instructions/constraints, as a 
step in the direction of allowing for more prompt and 
reactive environments for the player to operate in. Unlike 
the literature that has dealt with models based on either 
probabilistic graphical models or automata theory, Mar-
kov Network for Free Improvisers (hereinafter MN4FI) is 
an abstraction for and between human players and no 
musical output is generated by the machine. The hypoth-
esis to be tested is to whether this given model provides 
alternative dynamical and interactive opportunities and 
modalities to groups of free improvisers, while maintain-
ing freedom and flow in the performance. 

4.2 System Design and Interaction Model 

MN4FI follows directly from the example above regard-
ing an induced MN. It formally maps players to a type 
and each type to a set of weighted strategies, or affinity 
preferences. The potential of this model lies in the fact 
that local distributions are not reflected or retrievable by 
the global graph and in that each of the players’ screen 
might depict a different locality of connections. 
The interaction model is described by a graph with up to 
ten vertices, each representing a different player. Each 
player is assigned a musical personality, what in Bayesi-
an terms would be referred to as a type. Such type is pri-
vate information and it is not shared amongst the players. 
This very fact implies that particular care needs to be 
taken when deciding on the spatial physical distribution 
of the players, in that they ought not to be able to see 
each other’s screen. 
Each of these four different types has an optimal local 
pairwise counter type, and ideally each player will try to 
infer the others’ type in order to achieve such optimal 
joint assignment. Each player’s degree (the number of 
other players he/she is connected to) is capped to n-2 with 
n being the total number of players.  Players can only 
musically interact with players they are connected to. The 
structuring principle consists in that each local graph 
might differ from any other, and the induced MN will not 
be common knowledge, nor will the local factor be re-
trievable should one be able to observe the resulting in-
duced MN. Players are free to revoke one connection at a 
                                                             
1 partially available online at:  
http://www.ransompaycheque.com/the-brazilian-games  
http://www.ransompaycheque.com/finite-state-machines 
 

time, thus regaining the faculty of initiating a different 
one, if they wish. They instantiate and revoke edges ac-
cording to their beliefs about the players they are con-
nected or want to connect to. Additionally, players can 
also trigger a stochastic change of their own type.  
The table below describes the affinity preferences for any 
local pair of players. 
 

 
 Cooperative      Non-

cooperative 
Chaotic Solipsistic 

Cooperative           100          10         40         60 
Non-
cooperative 

            10              70         60         80 

Chaotic             40          60       100          80 
Solipsistic             60          80         80        100 

 
Table 2. Inter-type local strategy matrix 

 
 
It is important to note that the above numbers are arbi-
trary and the table is clearly not normalised. 

4.3 Implementation and individual modules 

MN4FI is realised in the programming language Max 
(http://www.cycling74.com). It follows a cen-
tralized design, consisting of one module for the players 
and one module which acts as a hub, receiving and des-
patching requests over a custom network, using the OSC 
protocol. There are n workstations, one for each player. 
At present, MN4FI accommodates up to ten vertices. In 
the presence of more than ten players, two or more of 
them can cluster around one workstation, thus sharing the 
screen, the assigned type, and the responsibility of con-
necting and removing edges.  
In terms of actual coding, the core of the player’s inter-
face is realised using JavaScript within Max. This allows 
for a dynamical instantiation of the graph, depending on 
the number of players performing. Players connect and 
disconnect to and from a vertex by means of the numeri-
cal keyboard or using their GUI. They can also operate a 
trigger, which randomly reassigns their type. It is worth 
reminding that such type is private information.  
The player patch has been compiled into a standalone 
application, in order to ensure that all players can run the 
interface, regardless of whether they have Max or not. 
Such consideration stemmed from the necessity to widen 
participation beyond limits of economical nature, Max 
being proprietary software. Each player’s node will ap-
pear in red on their respective graph, and each node they 
are connected to will be coloured green. Else, the discon-
nected nodes appear in yellow. The GUI shown in fig.3 is 
what any given player sees and interacts with.  
 



 
 

Figure 3. The player’s GUI 

4.4 Evaluation 

MN4FI was first played during the visit of Amsterdam-
based duo Shackle at the Sonic Arts Research Centre 
(SARC) in Belfast on 03.12.2015, during which I had the 
opportunity to try the model out. At the time, MN4FI was 
implemented rather differently and it did not accommo-
date more than four players. MN4FI was subsequently re-
worked and tested with some of the members of QUBe, 
the resident experimental music ensemble of SARC. This 
time, MN4FI was played by eleven players. Both sessions 
have been recorded in audio and video format, and can be 
found online at the following website: 
 
 http://ransompaycheque.com/markov-
random-fields 
 
Fourteen players completed an evaluation form, as well 
as participating in short focus group discussions, over the 
course of the two instances. These were both valuable 
tools for obtaining feedback and suggestions for im-
provements, with respect to aesthetic, artistic and techno-
logical considerations. Given the small size of the sample 
(fifteen players in total), this paper can by no means 
claim to be conclusive or statistically significant. 
The results obtained are, rather, a way to inform the next 
steps for the development of MN4FI.   
The evaluation form is divided into three sections, each 
containing multiple questions to which the player can 
answer categorically on a Likert scale in 5 levels (from 
‘strongly disagree’ to ‘strongly agree’, re-coded to 1-5). 
Players’ proficiency was also reported in 5 categorical 
levels (from ‘none’ to ‘expert’). The three sections pre-
sent questions that address the degree of freedom experi-
enced within the model, the degree of satisfactory output 
perceived, and how appropriate the design of the GUI is 
deemed, respectively. The answers collected pointed to 
the need of rehearsal time dedicated to familiarise and 
operate the GUI whilst maintaining the flow of musical 
improvisation. This is particularly true with respect to 
players who do not normally include electronics or other 
interfaces in their artistic practice. Proficiency levels 
were almost exclusively distributed between ‘good’ and 
‘expert’ with 38.5% and 46.1% respectively. The remain-
der was evenly split between ‘none’ and ‘proficient’. No 
player self-reported their proficiency as ‘fair/basic’. 

 
Figure 4. Proficiency levels 

 
Levels of freedom experienced in playing this model 
were evenly distributed amongst level 3, 4 and 5, at 
0.308, 0.385 and 0.308 respectively, leaving out the cate-
gories 1 and 2, which would correspond to a lower per-
ceived freedom.  
 

 
Figure 5. freedom with respect to proficiency levels 

 
It appears clear that more experienced players had better 
chances to navigate the model with a higher likelihood of 
experiencing flow and un-hampered creativity in their 
performance. Overall, there was a consensus of the posi-
tive experience that all participants had of the piece. 
 

 
Figure 6. happiness with respect to proficiency levels 
 

With regards to the evaluation in terms of inspiration for 
new ideas and interactions, the following are the percent-
ages: 
 

2 3 4 5 

0.23076923 0.23076923 0.46153846 0.07692308 

 
Table 3. Marginals for novel interaction  



As seen from above, nearly 70% of the participants felt 
that the model suggested new and non-normative ideas 
(level 3 and 4). Furthermore, over 84% of the participants 
reported being happy and satisfied with the musical out-
come. 
From examining the correlation matrix for some variables 
in both the freedom and the output section, one can notice 
that, unsurprisingly, the strongest correlations are be-
tween freedom and constraint, proficiency and constraint, 
and between freedom experienced and the willingness to 
play again according to the model. 
 
 Proficiency Freedom Novelty Constraint Play 

again 
Proficiency 1.0 0.319 0.323 -0.412 -0.104 

Freedom 0.319 1.0 -0.319 -0.795 0.532 
Novelty 0.323 -0.319 1.0 0.022   0.234 
Constraint -0.412 -0.795 0.022   1.0 -0.334 
Play again -0.104 0.532 0.234 -0.334 1.0 

 
Table 4. correlation matrix  

 
The most valuable finding was, however, to be had dur-
ing the focus group discussion, where it was reported that 
MN4FI encouraged a type of behaviour that was atypical, 
with respect to the simultaneous focus on both inner clus-
ters of musical interaction and the global musical out-
come.  
" I think it encourages a lot more interaction, like when-
ever we just play free improvisation people tend to go in 
their own wee world sometimes whereas with this, it kind 
of focuses you more on the fact that there are other peo-
ple around you, also playing, and you have to listen to 
them".  
"Yes, it forms subgroups within something larger that is 
going on".  
(QUBe members, focus group discussion, 23.02.2016)  

5. CONCLUSIONS 
In this work I have shown an equivalence between prob-
abilistic graphical model based structures and Bayesian 
games in the context of a real-time interaction network 
amongst free improvisers. By implementing and testing a 
Markov Network as the determining structure for forming 
or abandoning musical local relationships amongst the 
performers, I have been able to show that insights from 
one area (PGMs) may be applied to the other (musical 
free improvisation) to provide an alternative and artisti-
cally valid and satisfactory modus operandi. I believe that 
this result is particularly exciting as it opens up numerous 
possibilities of intersection between free improvisation 
and paths that have so far been exclusive to the domains 
of decision theory, propositional logic and artificial intel-
ligence. I claim to have employed a methodology that 
asserts the real-time human interaction as paramount, 
much in contrast to the uses of Markov Processes that 
have so far informed the discourse around musical im-
provisation and artificial intelligence/machine learning. 
In the latter cases, the Markov and Bayesian processes 
are employed to train an intelligent and autonomous arti-
ficial agent that either interacts with the human performer 
or generates music in the style of. Future work includes 

extending the model to allow players to send local as-
signments to their sepset and/or adapting the network to 
include more complex rules, for example in the form of 
Markov Logic Network, by the introduction of first order 
logic. 
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